SHOCK WAVE COMPRESSION OF LIQUIDS

	Initial density (g/cc)	Shock velocity (km/sec)	Particle velocity (km/sec)	Pressure (kbar)	Relative volume (V/V ₀)	Dural shock velocity (km/sec)	
-	1.590	2.32 ± 0.01	0.72 ± 0.08	27±3	0.688 ± 0.035	5.93 ± 0.07	
	1.577	2.27 ± 0.01	0.84 ± 0.04	30 ± 2	0.631 ± 0.018	6.02 ± 0.03	
	1.571	2.47 ± 0.01	0.83 ± 0.04	32 ± 2	0.663 ± 0.018	6.02 ± 0.04	
	1.571	2.79 ± 0.01	0.97 ± 0.03	43 ± 1	0.652 ± 0.010	6.16 ± 0.02	
	1.586	2.91 ± 0.01	1.03 ± 0.03	48 ± 1	0.645 ± 0.010	6.22 ± 0.03	
	1.594	2.95 ± 0.01	1.04 ± 0.04	49 ± 2	0.648 ± 0.012	6.23 ± 0.03	
	1.596	3.28 ± 0.01	1.25 ± 0.03	65 ± 1	0.619 ± 0.008	6.43 ± 0.02	
	1.571	3.32 ± 0.01	1.33 ± 0.02	70 ± 1	0.598 ± 0.006	6.50 ± 0.02	
	1.606	3.46 ± 0.01	1.33 ± 0.02	74 ± 1	0.615 ± 0.007	6.52 ± 0.02	
	1.591	3.44 ± 0.01	1.36 ± 0.02	74 ± 1	0.606 ± 0.007	6.54 ± 0.02	
	1.598	3.50 ± 0.01	1.45 ± 0.08	81 ± 5	0.585 ± 0.023	6.62 ± 0.07	
	1.577	3.74 ± 0.01	1.61 ± 0.02	95 ± 1	0.568 ± 0.006	6.78 ± 0.02	
	1.571	3.86 ± 0.01	1.69 ± 0.01	102 ± 1	0.563 ± 0.003	6.86 ± 0.01	
	1.606	4.08 ± 0.01	1.73 ± 0.04	113 ± 3	$0.576 {\pm} 0.011$	6.92 ± 0.04	
	1.580	4.07 ± 0.01	1.77 ± 0.02	114 ± 1	0.566 ± 0.005	6.95 ± 0.02	
	1.571	4.27 ± 0.03	1.97 ± 0.09	132 ± 6	0.539 ± 0.021	7.14 ± 0.08	
	1.571	4.52 ± 0.01	2.07 ± 0.02	148 ± 1	0.542 ± 0.003	7.26 ± 0.01	
	1.586	4.66 ± 0.01	2.10 ± 0.02	156 ± 1	0.549 ± 0.004	7.31 ± 0.02	
	1.596	4.71 ± 0.01	2.15 ± 0.04	161 ± 3	$0.544 {\pm} 0.008$	7.35 ± 0.03	
9	1.574	4.88 ± 0.01	2.36 ± 0.03	182 ± 2	$0.516 {\pm} 0.006$	7.56 ± 0.03	
	1.610	5.34 ± 0.02	2.55 ± 0.03	220 ± 2	0.522 ± 0.005	7.80 ± 0.03	
	1.580	5.21 ± 0.01	2.62 ± 0.02	216 ± 2	0.497 ± 0.004	7.83 ± 0.02	
	1.588	5.72 ± 0.03	2.95 ± 0.07	268 ± 7	0.484 ± 0.013	8.20 ± 0.06	
	1.571	5.69 ± 0.02	3.06 ± 0.05	274 ± 5	0.461 ± 0.009	8.29 ± 0.05	
	1.571	6.13 ± 0.03	3.22 ± 0.03	311 ± 3	0.476 ± 0.005	8.48 ± 0.03	
	1.584	6.44 ± 0.05	3.44 ± 0.08	352 ± 9	$0.465 {\pm} 0.014$	8.74 ± 0.08	
	1.598	6.80 ± 0.02	3.64 ± 0.04	395 ± 4	$0.466 {\pm} 0.006$	8.97 ± 0.04	
	1.582	6.72 ± 0.02	3.69 ± 0.07	392 ± 7	0.451 ± 0.010	9.00 ± 0.06	
	1.580	6.78 ± 0.03	3.77 ± 0.08	404 ± 9	$0.444 {\pm} 0.013$	9.08 ± 0.08	
	1.586	7.13 ± 0.03	4.05 ± 0.06	458 ± 7	0.432 ± 0.008	9.39 ± 0.05	
	1.588	7.55 ± 0.02	4.40 ± 0.06	527 ± 7	0.417 ± 0.008	9.77 ± 0.06	
	1.588	7.96 ± 0.03	4.58 ± 0.06	579 ± 8	0.425 ± 0.009	10.00 ± 0.06	
	1.598	8.06 ± 0.06	4.74 ± 0.13	611 ± 17	0.411 ± 0.017	10.17 ± 0.12	
4	1.580	8.24 ± 0.04	4.74 ± 0.11	617 ± 14	0.425 ± 0.014	10.18 ± 0.10	
	1.584	8.26 ± 0.03	4.84 ± 0.10	633 ± 13	0.415 ± 0.012	10.28 ± 0.09	

TABLE III. Shock wave data for carbon tetrachloride.

velocity and the excellent agreement between the measured sound speed¹⁹ and the intercept of the lower line with the U_s axis. The line segments were determined by a least-squares fit of the $U_s - U_p$ data; in the region $2.40 \le U_s \le 3.50$ km/sec the relationship is

 $U_s = 1.18 \pm 0.22 + (1.67 \pm 0.14) U_p, \tag{9}$

and from $3.50 \le U_{\bullet} \le 8.20$ km/sec,

$$U_s = 1.11 \pm 0.07 + (1.35 \pm 0.02) U_p. \tag{10}$$

In the particle velocity interval of 1.39 to 1.84 km/sec, the shock velocity is essentially constant. The data of Walsh and Rice⁸ agree with the present data but those of Cook and Rogers⁹ do not. The abrupt change in the slope and the offset of the two line segments indicates a transition occurring at about 62 kbar $(U_*=3.50 \text{ km/sec}, U_p=1.40 \text{ km/sec}, \text{ and } \rho_0=1.263 \text{ g/cc})$ with a new phase formed at about 80 kbar

 $(U_s=3.50 \text{ km/sec}, U_p=1.80 \text{ km/sec}, \rho_0=1.263 \text{ g/cc})$. The intercept of the lower line segment with the U_s axis (1.18 km/sec) is very close to the measured sound speed of 1.16 km/sec, indicating that carbon disulfide is in the liquid state from 1 bar-62 kbar.

The $P-V/V_0$ plot of Fig. 7 is characterized by concave upward curves above 80 kbar and below 62 kbar with a well-defined cusp representing the transition at 62 kbar. A straight line segment joins the two major curves. Using the lower curve as a reference, the decrease in relative volume ascribed to the transition is nearly 17%. Every point on the $P-V/V_0$ curves can be reached by the Rayleigh line in a single shock originating from the P_0 , V_0 point. As a result there is no double shock wave structure associated with the transition even though an interval of constant shock velocity was observed in the U_*-U_p plot. This was confirmed by experiment (see Sec. II). The